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Abstract. The phase variation of the σ → ππ amplitude is accurately determined as a function of mass
from BES II data for J/Ψ → ωπ+π−. The determination arises from interference with the strong b1(1235)π
amplitude. The observed phase variation agrees within errors with that in ππ elastic scattering.

The σ pole appears as a conspicuous π+π− peak in BES II
data for J/Ψ → ωπ+π− [1]. This peak is absent from data
on ππ S-wave elastic scattering. The connection between
these two processes is a question which is explored here.

For both processes, the partial wave amplitude f(s)
may be written

f(s) = N(s)/D(s), (1)

where N(s) has only left-hand cuts and D(s) has only
right-hand cuts. The N function can be different for the
two processes. We pursue the hypothesis that N(s) for ππ
elastic scattering contains an Adler zero, which is absent
from the production process. The phase variation above
the ππ threshold arises from the right-hand cut. The D
function should be the same for all processes if only a
single resonance contributes. The question is whether BES
data and ππ elastic scattering data are consistent with
this hypothesis.

The Dalitz plot for J/Ψ → ωπ+π− is shown in Fig. 1.
The σ pole appears as a diagonal band at the upper right-
hand edge of this plot. There are also strong vertical and
horizontal bands due to b±

1 (1235) → ωπ±. These two bands
account for 41% of the data; the σ pole accounts for 19%
and f2(1270) for most of the remaining intensity. There is
strong interference between the b1(1235) bands and the σ
amplitude; this interference provides an accurate determi-
nation of the phase δσ of the σ as a function of ππ mass.

The polarisation of the ω is along the normal to its
decay plane. The f2(1270) components in the data have
angular correlations with this normal which are distinc-
tively different from those of the σ; as a result, f2 and σ
are well separated in the mass range where the σ ampli-
tude is sizable, up to 1000 MeV. Above this mass, the σ
amplitude is swamped by the f2(1270) peak.

The amplitude analysis follows the conventional iso-
bar model. The amplitude for the b1(1235)π final state
is parametrised as exp(i∆b1)F (b1) and that for the ω is
parametrised as exp(i∆σ)F (σ → ππ). Here ∆b1 and ∆σ
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Fig. 1. The Dalitz plot for ωπ+π−

are constants describing the strong interaction phases of
the 3-body final states b1π and ωσ. The F (b1) amplitude is
a Breit-Wigner amplitude of constant width for b1(1235).
A detail is that both S and D-wave decays of b1 → ωπ are
included, and the D/S ratio of amplitudes is fixed to the
PDG value of 0.29 [5].

The F (σ → ππ) amplitude is taken as [3]:

F (σ → ππ) =
Gσ

M2 − s − iMΓtot(s)
, (2)

Γtot(s) = g1
ρππ(s)

ρππ(M2)
+ g2

ρ4π(s)
ρ4π(M2)

, (3)

g1 = (b1 + b2s)
s − m2

π/2
M2 − m2

π/2
exp[−(s − M2)/a].

(4)
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Fig. 2. The phase of the ππ S-wave amplitude.
The full curve shows the fit from (2)–(4) to both
BES data and elastic scattering data; the dashed
curve shows the fit with a Breit-Wigner ampli-
tude of constant width, and the dotted curve
the fit with Γ (s) ∝ ρ(s); points with errors show
results fitted to slices of ππ mass 100 MeV wide.
In a, the phase is fitted one bin at a time; in
b magnitude and phase are fitted one bin at a
time; in c, phases are fitted in all bins simulta-
neously; in d magnitudes and phases are fitted
to all bins simultaneously

Here ρππ is the usual ππ phase space 2k/
√

s and k is the
momentum in the ππ rest frame. This formalism includes
the Adler zero explicitly into Γ (s); the exponential factor
cuts off the width at large s. This formula has been fitted
simultaneously to BES data [1], CERN-Munich data [4]
and the Ke4 data of Pisluk et al. [5]. Our objective is to
determine the phase

δσ(s) = tan−1
(

MΓ (s)
M2 − s

)
. (5)

A small detail is that (2) should strictly contain a dispersive
correction to the real part of the amplitude. However, over
the mass range covered here, this correction is very small
because the phase rises almost linearly with s. The term
b1+b2s fitted to the data accomodates this small correction.

Another technical detail is that there are actually two
J/Ψ → ωσ amplitudes having orbital angular momenta
L = 0 and 2 in the production process. These are both
included in the fit, with different coupling constants and
different strong interaction phases ∆σ. A centrifugal barrier
for production with L = 2 is included, but has little effect
since the momentum in the ωσ final state is large. Likewise,
L = 0 and 2 are both possible for J/Ψ → b1(1235)π; in
practice the L = 2 amplitude is small.

In the fitting procedure, all amplitudes except that for
ωσ are fitted to the whole data set. In order to determine
the phase variation of the σ amplitude with mass, slices
100 MeV wide are examined from Mππ = 400 to 1000 MeV.
Lower masses are not accessible because the b1 band runs
off the corner of the Dalitz plot; as a reminder, sππ varies

linearly as one moves perpendicular to the σ band, with
the result that low masses are compressed tightly towards
the edge of the Dalitz plot.

The determination of δσ has been done in four ways
with progressively increasing freedom in the fit, in order
to check for consistency. Results are shown as points with
errors in panels a–d of Fig. 2. In the first (most restrictive)
approach a, only one bin of ππ mass is examined at a time.
The σ amplitude is fitted to the whole ππ mass range,
but allowing a perturbation to the phase δσ of the Breit-
Wigner amplitude in a single bin. In the second approach
b, both magnitude and phase of F (σ → ππ) are set free
in one bin at a time. In Fig. 2c, the phase is set free in
all bins simultaneously, but the magnitude is fitted to the
whole mass range in accordance with (2)–(4). In Fig. 2d,
the magnitude and phase are fitted freely in all bins simul-
taneously. Coupling constants of all other amplitudes are
re-optimised for every fit.

The full curve of Fig. 2a shows the optimum fit to the
whole mass range using (2)–(4). The strong interaction
phase difference ∆b1 − ∆σ produces an offset, which is
furthermore different for L = 0 and L = 2 amplitudes; only
the phase variation with mass is meaningful. The curve is
therefore drawn so that δσ = 0 at the ππ threshold. It
turns out that the phases ∆b1 and ∆σ are such that the
ωσ and b1π amplitudes differ by 90◦ in phase at a ππ
mass of 600 MeV. The interference term between the two
amplitudes depends on the cosine of the phase difference,
and is therefore determined with maximum sensitivity at
this mass.
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Fig. 3. Fit to elastic scattering data. Dashed curve: σ com-
ponent from (2)–(4); full curve: full fit; triangles, Ke4 data
[4]; black squares, Cern-Munich data [3]; open circles, charge
exchange data [8,9]

The dashed curve of Fig. 2a shows an alternative fit
using for the σ a Breit-Wigner amplitude of constant width.
In this case, the offset ∆b1 − ∆σ is different because the
fitted mass M is different; the curve is therefore adjusted to
reproduce the same phase as the full curve at 550 MeV, for

purposes of comparison. The dotted curve shows a fit using
a Breit-Wigner amplitude where Γ (s) ∝ ρππ(s); again it
is fixed to the same phase as the full curve at 550 MeV, to
allow a clear comparison with the other two fits.

There is only small discrimination between the first two
forms. The agreement of phases with the curves demon-
strates the correlation of magnitude and phase expected
from analyticity. The third form, Γ ∝ ρ(s) (dotted curve),
gives a somewhat poorer fit with slightly too large a phase
variation. It also suffers fromthedefect that it gives a virtual
state pole below the ππ threshold at Mππ ∼ 232 MeV [3,6].

We consider the fit of Fig. 2c the most realistic. In b
and d, there is statistical noise of ∼ ±15% in the intensity
fitted to individual bins. This noise is obviously unphysical,
since the σ amplitude should vary smoothly with mass;
noise in the magnitude introduces noise into the phase via
correlations in the real part of the interference. Errors on
phases are therefore over-estimated in b and d.

It comes as no surprise that δσ is accurately determined.
In [1], it was found that all three forms give pole positions
in agreement within ±39 MeV for the real part and within
±42 MeV for the imaginary part. The extrapolation from
the Real s axis to the pole requires that real and imaginary
parts of the σ amplitude are separately well determined.
This requires that the phase is also well determined as a
function of mass.

The determination of δσ is insensitive to the precise
mass and width of the b1. This is because the σ and b1
bands cross on the Dalitz plot at an angle of 45◦ and the
data integrate over the line-shape of the b1.
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Fig. 4. Angular distributions (uncorrected for
acceptance) for angles χ, θω, απ and βπ defined
in the text; histograms show the fit for four
ranges of ππ mass. The lower histograms in
each panel show backgrounds. Dashed curves
show the acceptance
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In fitting ππ elastic data, we adopt the Dalitz-Tuan
prescription [7], adding phases of σ and f0(980) ampli-
tudes. [The f0(1370) and f0(1500) contributions are like-
wise added in, but are very small]. This prescription guaran-
tees that unitarity is satisfied up to the inelastic threshold.
The dashed curve of Fig. 3 shows the σ phase δσ from (5);
the full curve shows the sum of all contributions. There is
satisfactory agreement with Ke4 data (triangles), CERN-
Munich data (black squares) and charge-exchange data
(open circles), though there is some discrepancy between
the latter two above 700 MeV; the fit goes midway between
these two sets of data.

The phase information places restrictions on models
of the σ. Although a Breit-Wigner amplitude of constant
width fits production data, it gives the absurd result for
elastic scattering that δσ = 63◦ at threshold. This requires
a compensating background phase of ∼ −63◦ at all masses;
this is unphysical, since left-hand cuts cannot reproduce
such a behaviour.

A Breit-Wigner amplitude with Γ ∝ ρ(s) likewise re-
quires a large background phase in elastic scattering ∼
−50◦ at threshold. A fit to elastic scattering then requires a
background phase which drops rapidly from zero at thresh-
old to ∼ −50◦. The Ishida group has shown that elastic data
may be fitted with a repulsive background phase linearly
proportional to centre of mass momentum and a Breit-
Wigner amplitude with Γ ∝ ρ(s); the scattering length is
rather larger than experiment [10]. A more complicated
background phase corrects this defect [11] and also remove
the virtual-state pole below threshold.

Angular distributions are shown in Fig. 4 for four ranges
of ππ mass. The angle χ is the azimuthal angle between
the production plane of J/Ψ → ωX and the decay plane
X → ππ. The angle θω is the production angle of the ω
in the J/Ψ rest frame. The angle απ is the decay angle
of the π+ in the rest frame of X, taken with respect to
the direction of the recoil ω. The angle βπ is the angle of
the π+ with respect to the direction of X in the rest frame of

the ω. The third distribution, cosαπ departs significantly
from isotropy. This effect was observed in the earlier DM2
data [12]. Up to M(ππ) = 700 MeV, the departure from
isotropy is due entirely to interference with b1(1235); above
800 MeV, interference with f2(1270) begins to play a role.
Up to 800 MeV, there is no evidence for any significant ππ
D-wave amplitude. In d, one sees a strongly varying decay
angular distribution due to f2(1270).

In summary, ππ elastic data and BES production data
agree well for the phase variation of the σ amplitude with
mass from 450 to 950 MeV. This result is consistent with
a single σ resonance with s-dependent width due to the
Adler zero; however, some non-resonant background phase
could be present in addition.
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